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Wave operators for atomic photo-ionisation 

H G Muller and A Tip 
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, 
The Netherlands 

Received 1 June 1982, in final form 6 October 1982 

Abstract. The time development of a system consisting of an atom in an external 
electromagnetic field with fixed propagation direction is studied (vector potential A(x ,  t )  = 
A ( x 3  - c t ) ) .  It is shown that the Maller wave-operators, relevant for photo-ionisation, 
exist, provided the components A,(u) of A decay as / U I - ' - ~ ,  c > O ,  for large argument U. 
Since A ( x ,  t )  is not necessarily spatially homogeneous, the above results can serve as a 
starting point for an investigation of field-gradient effects on photo-ionisation processes. 

1. Introduction 

In semiclassical theories of multiphoton ionisation of atoms the field that causes the 
ionisation process enters into the Hamiltonian through the vector potential A (x, r ) .  
The simplest way to proceed is then to neglect the x dependence of A (the so-called 
long-wavelength approximation). In addition the field is often assumed to be monochro- 
matic. In practice experiments are performed with fields produced by pulsed lasers 
so that we are dealing with radiation fields which are localised in both space and time. 
In view of the very intense laser pulses that can nowadays be obtained (10'' to 
10l6 Watt/cm2) it becomes of interest to know what effects the field gradients can 
have on phenomena such as multiphoton ionisation of atoms (Boreham and Hughes 
1981, Agostini er a1 1981). 

In the present work we study some aspects of a model where an atom is influenced 
by an external field with a fixed propagation direction. The vector potential is given 
by 

Thus A(x, r )  is divergence free and propagates in the .t3 direction. In this way pulses 
can be described that are localised in this direction and in time but are still of infinite 
extent in the two other space directions. This still leaves something to be desired but, 
on the other hand, the advantage of the present model is that the explicit time- 
dependence of the Hamiltonian can be transformed away. 

We neglect spin effects in our description of the atom. The Hamiltonian is then 
given by (in atomic units) 

A(x, t ) = { A i ( X g - C t ) , A 2 ( ~ 3 - ~ t ) ,  O}. (1.1) 

0 1983 The Institute of Physics 1641 



1642 

Here coordinates are measured in units a. (the Bohr radius), time in units m a i / R ,  
charges in units e (the absolute value of the electronic charge), masses in units m (the 
electronic mass). CY is the fine-structure constant. Particle 0 is the nucleus with mass 
mo and charge eo = N whereas particles 1 to N are the electrons with mass mi = 1 
and charge ei = - 1. 

General results exist concerning the self-adjointness of H ( t )  for some fixed t E R  
(Jorgens and Weidmann 1970, Schechter 1971). Here we shall assume that the two 
non-zero components A,(u), IT = 1, 2, of the vector potential are essentially bounded 
measurable functions of their argument, i.e. A,(u) E L"(R, du).  Thus A,(xj3  CY-'^) 
defines a bounded multiplication operator acting in the Hilbert space %'= 
L2(R3"+", dro , . . dxN). Then H ( t )  is self-adjoint with domain $3 = 9 ( T ) ,  where 
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is the total kinetic energy operator. In particular 9 does not depend on t E R. We 
note further that all contributions to H ( t )  - T are relatively T-bounded with zero 
relative bound. 

General methods exist (Kato 1953, 1970, Yosida 1968) to determine whether or 
not H ( t )  defines a unitary time-evolution operator, i.e. a solution of the equation 

a,U(t, to) = -iH(t)U(t,  t o )  (1.41 

subject to the initial condition U(t0, t o )  = 1. One such method was employed by 
Combe et a1 (1975) who considered a hydrogen atom in the Born-Oppenheimer 
approximation. In our case, however, there exists a simple time-dependent unitary 
transformation which leads to a time-independent Hamiltonian so that the existence 
of U(t ,  to)  becomes a straightforward matter. 

In $ 2  we prove the existence of U(?,  to) and we define the Moller wave-operators 
relevant for photo-ionisation. In $ 3 we demonstrate the existence of the latter. Our 
case differs from the one considered by Combe et a1 (1975) since these authors 
assumed the vector potential to be independent of the coordinates. We, on the other 
hand, assume A(x3-a-' t )  to vanish for large values of its argument and this was not 
assumed by the above-mentioned authors. The case we consider is somewhat closer 
to the actual experimental situation where the ionisation products are measured in a 
space-time region where the field vanishes. 

In 3: 4 we discusss briefly two special cases. The first is that of an infinitely heavy 
nucleus (Born-Oppenheimer approximation) and the second that of a spatially 
homogeneous field. A discussion section concludes the present work. In a subsequent 
paper we shall discuss the connection between the scattering operator, defined in 
terms of the wave operators, whose existence is proven in the present work, and the 
physical quantities that are measured in an actual experiment. 

2. Time evolution 

In this section we show the existence of U(?,  t o )  and that it possesses the usual properties 
of a time-evolution operator, i.e. U(t ,  t o )  is strongly continuous in t, it maps 9 into 
itself, U(?,  tl)U(tl, t o )  = U(?,  t o ) ,  U ( t ,  to)* = U(?,  to)-* = U(t,, t ) .  In order to obtain 
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these results we make use of a translation in coordinate space. Thus let 
N 

* = o  
P =  c PI 

be the total momentum operator. Since its components are self-adjoint operators the 
family 

{ y ( t )  = e x p ( - i a - ' ~ ~ t )  I t E R} (2.2) 

constitutes a strongly continuous group of unitary operators. In Fourier space T is a 
multiplication operator and Y(t) a multiplication by a phase factor which leaves &, 
the image of 9 under Fourier transformation, invariant. Consequently Y ( t )  leaves 
9 invariant. Momentum variables are left invariant under the transformation p, + 

Y(t)p,Y(t)-' whereas coordinates are translated according to 

(2.3) Y(t)x,Y(t)-'=x, -a  te3, 

m, be the total 

-1 

N e,, U = 1, 2, 3,  being the unit vector along the x*, axis. Let M = 
mass and 

N 

1 =o 
x = M-' mjxj 

be the centre-of-mass (CM) position vector. Since its components are self-adjoint 
operators 

N 

z = e x p ( i ~ a - l ~ 3 )  = exp( ia-' 1 mjxi3) (2.5) 

is a unitary operator. Since 2 acts as a phase factor on elements of 2 it maps 9 
onto itself. The transformation xi +ZxjZ-'  leaves xj invariant but momenta undergo 
a translation 

(2.6) 

j = O  

1 -1 ZpjZ- =pi-mia e3.  

Let 

Then 

H ( t )  = Y(t)fiY(t)-l ,  (2.8) 

in  the sense that the left- and right-hand sides of (2.8) give the same result when 
acting upon an element 4 ~ 9 .  This follows from the fact that momenta are left 
invariant under the transformation on the right in (2.8) and coordinates are shifted 
according to (2.3). Since V only depends on the differences of position vectors it is 
left invariant ( V  commutes with the total momentum vector). We note further that 
H ( t )  and I? have the same domain 9 and Y(t)  maps 9 onto itself. Let now 

fi=fi-ff-'p3. (2.9) 
fi with domain 9 is self-adjoint since P3 is T-bounded with zero relative bound (note 
that 9 (P3) ,  the domain of P3, contains 9). Thus 

(2.10) { i r ( t )  = exp(-&r) I t E R) 
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defines a strongly continuous group of unitary operators. Next we define a family of 
unitary operators according to 

{ U ( t ) =  Y(t)f i ( t ) l t  ER}. (2.11) 

For 4 €93, f i ( t ) $  €9 andfi$(t)$ = fi(t)fi$ (Kato 1966,p481). SimilarlyP3Y(f)4 = 
Y(f)P34 for 4 E S(P3) .  Since Y(t) maps 9 onto itself we also have U(t)i,b E 9. Now, 
using the inclusion relation 9 (P3) 3 9, we have for each $ E 9 : 

a,U(t)G = a,Y(r)fi(t)+ = -ia-'P3Y(t)Lf(t)4 -iY(t)Eifiit)$ 

- -ia - ' [p3 Y i t  - Y ( t  )p3] 0 ( t  14 - i Y ( t  )fiy-' ( t U ( t  - 

= --iH(t)U(f)G. 
It follows that 

(2.12) 

U(t ,  to) = U(t)U(to)- '  = yit) exp[-A(t - - t O ) ~ ~ ( t o ) - l  (2.13) 

is a solution of (1.4) and has the properties mentioned in the introduction of this 
section. Its uniqueness is clear from the following considerations: let 4 ( t ) ~ 9  be a 
solution of 

ad(t) = -*(t)$(t) (2.14) 

subject to the initial condition $ ( O )  = 4. Then 

arY-'(t)$(t) = -iEiY-'(t)4(t) (2.15) 

but this equation has the unique solution 

Y- ' ( t )$( t )  = exp(-iEit)Y-'(t = o)$(t = 0) = exg(-ifit)ll/, 

i.e. cL(t j = U(t)$.  We can rewrite (2.9) in the form 
N 

/ = O  
fi = C (2m,)-'[p, - e , A ( ~ , ~ ) - m , a - ' e 3 ] ~ +  V-M/(2a2)  

= z f i z - ' - M / ( 2 a 2 ) .  (2.16) 

(2.17) 

where 

U ( t )  = exp(-&tj. (2.19) 

We now consider the case that an atom is ionised due to the action of the electromag- 
netic field. Under the assumption that A,(u) vanishes for large values of its argument 
we can encounter the situation that, asymptotically, for t + -00, the atom is freely 
moving and in an eigenstate of its internal motion (the ground state, in practice). 
Then ionisation takes place and, asymptotically for t + +CO, we have a freely moving 
electron and positive ion. Of course the possibility exists that more electrons are 
stripped off the ion, but this process is usually not studied experimentally. 

Thus in the entrance channel the asymptotic motion is governed by the Hamiltonian 

(2.20) 
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where TCM = ( 2 M ) - ' P 2  and Ha' are the Hamiltonians associated with the centre-of- 
mass motion and the internal atomic motion, respectively. In the exit channel we are 
dealing with a freely moving electron and positive ion. At this stage the Pauli principle 
must be taken into account (Hi" is invariant under interchange of the electrons so 
that antisymmetry is preserved under the corresponding time evolution). It is sufficient, 
however, to consider the case that a specific electron, say 1, is ionised, as will be 
discussed in a subsequent paper. The Hamiltonian associated with the outgoing 
channel then becomes 

(2 .21 )  

where T' is the Hamiltonian associated with the relative motion of electron 1 with 
respect to the centre of mass of the ion consisting of the nucleus and electrons 2 to 
N.  Hion is the Hamiltonian associated with the internal motion of the ion. (The 
definitions of the various coordinates and momenta are given in the appendix.) 

H""' = TCM+ T' +HIon, 

The asymptotic motion in the entrance channel is governed by 

U'"(t)  = exp(-iH'"t) (2 .22 )  

and the Mdler operators for this channel are the strong limits 

( 2 . 2 3 )  

(2 .24 )  

(2 .25 )  fp + - - s-lim exp(i&r) exp(-i&int)Pin 
r + f m  

since P3 and Hi" commute. 
Here Pi" = ICMO Pa' where ICM is the identity operator acting in RCM, the Hilbert 

space associated with the centre-of-mass motion, and Pa' is the projector upon the 
atomic bound states (i.e. the closed linear span of the atomic eigenstates) in the Hilbert 
space gip"', associated with the internal atomic motion. 

In the outgoing channel we are dealing with charged particles. Thus we have to 
modify the asymptotic time evolution to take into account the long-range nature of 
the Coulomb force (Dollard 1964). Thus 

U""'(t) = exp(-iti""'t)u/:. ( t ) ,  (2 .26 )  

where 

CC ( t )  = exp[i 1n(2ItI4:/ml)r/(slIti)l, t ZO. (2 .27 )  

Here q1 is the momentum operator associated with the relative motion of electron 1 
with respect to the ionic centre of mass, q1 = ( q l  1 and ml is the corresponding 
reduced mass (thus TI  = 4 : / ( 2 m l ) ,  see the appendix for details). The wave operators 
for the outgoing channel are now defined as 

2 1 / 2  

(2 .28 )  



1646 H G Muller and A Tip 

where 

P3. (2.29) 

In (2.28), Po"' = ICMO 1'0 PI"", I' being the identity operator in X', the Hilbert 
space associated with the relative electron-ion motion, PI"" is the projector upon the 
ionic eigenstates in %"On, the Hilbert space associated with the internal motion of the 
ion. 

f iou t ( t )  = exp(-&""'t)U; ( t ) ,  &jout  = H o U t - a - l  

A simple calculation shows that 

exp(-iTCMt) = e x p [ ~ r / ( 2 a ~ ) ] ~ ( t ) ~  exp(-iTCMt)Z-' (2.30) 

and, since the remaining terms in HI", H""' and UL(t) do not depend on the CM 

variables, (2.30) holds with exp( -iTCMt) replaced by Ui"(t) and U""'(t), respectively. 
It follows that 

nyt) = zfiln(t)z-l, n""'(t) = Zfi""'(t)Z -', (2.31) 

where 

fil"(t) = exp(ik)U'"(t)P'",  f io"'( t)  = exp(ikjU""'(t)P""'. (2.32) 

Since Z is unitary it follows that the existence of Cl:" and a?' is equivalent to the 
existence of 

(2.33) f i i n  - 
+ - s-lim h'"(r) 

r-+m 

and 

fi?' = s-lim hout(t), (2.34) 
r-+m 

respectively. 

provided 
In li 3 we outline an existence proof for the fi operators. We find that they exist 

sup IwIKAt(w)<w, U = 1, 2, (2.35) 
W P R  

for some K >2 .  This is the case if A,(w) is O(~w~-'- ' ) ,  E > O ,  for IwI+cO. 

3. The existence of the wave operators 

We prove the existence of fi: and A",' by means of Cook's method (Reed and Simon 
1979, p 20). Thus we start from the relations 

h'"(t)$ = fii"(toj$ + i  ds U*(s) ( f i  -Hi")Ui"(s)Pi"$ (3.1) r : 
and 
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The wave operators exist if the limits of the time integrals for t + fa in (3.1) and 
(3.2) exist for a fundamental set (i.e. a set whose linear span is dense) of 9 E 2. This 
is the case if 

respectively 

for t++a in (3.1) and (3.2) with similar expressions for f + - - c O .  In (3.4) we take 
to > 0 so that no problems occur with the m l / ( q l t )  term in t = 0. 

We start with (3.3). It is sufficient to consider a set Jll of 4's such that {PI"$ I $  EA} 
is fundamental in P1"X. Thus we take (e, =x, -X, j = 1, . . . , N )  

$(x, e l , .  * 7 iN) =gl(Xl)g2(xZ)g3(X3)hk(il, a * (3.5) 

where g u E 9 ( P u ) c L 2 ( R ,  U,), cr = 1, 2, and hk is an eigenfunction of Ha' with 
associated eigenvalue & k .  For g3(X3) we take the functions with Fourier transforms 
K exp[-K2/(2M)+iKp], p ER, whose linear span is dense in L2(R, dX3). (The 
corresponding three-dimensional case is discussed by PrugoveEki (1971, p 543).) 
Then ( c k ,  k = 1, 2, 3, . . . , denote constants in this section) 

(3.6) g3(x3,  t )  = c1(x3-p)(1  it^-^'^ e x p [ - ~ ( ~ ~ - p ) ~ / 2 ( 1  +it)]. 

+ ( t )  = exp(- iWt)$ = exp(-iTCMt)gO exp(-iekt)hk 

Now 

= exp(-i&kt)g(t)@ hk, (3.7) 

where g( t )  = exp(-iTCMt)g and the tensor product notation is self-explanatory. Thus 
we obtain 

//(I-? -H'")U'"(t)P'"$II 

=I/(& -H'")g(t)@ h k l l  

= 11 1 C [-(e,/ml)Au(x13)P,m +(e:/2ml)A~(x,3)lg(t)0 hkll 
2 N  

u = l  1 = O  

We consider / l A ~ ( x ~ ~ ) P l l g ( f ) O  hkll in some more detail. Let tfj be the canonical 
momentum associated with ti, j = 1 , .  . . , N.  Then, expressing p1 in terms of P and 
the t f j ,  
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where A and the pj  are real constants, we obtain 

(3.11) 

where 

Cz=C:J' dyy2-" exp(-My2)<co (3.12) 

and 

E , , , ( u ) = s u P / w ~ " A ~ ( w  + U ) = S U P  J W  - v ~ " A ~ ( w ) ,  (+ = 1,2 .  (3.13) 

Under the condition 

W ER W € W  

(3.14) 

E,,, (f13 + p )  defines a multiplication operator which is O(li13/") for large f13. Since 
hk (and also djlhk), being an atomic eigenfunction, has exponential decay (Combes 
and Thomas 1973), it follows that hk Eg((E,,,(f13+p)) and consequently 

IlAiW3+fi3)g3(t)@ hII=o(t-K'2) for t + CO. (3.15) 

The same analysis applies to the other terms in (3.10) and in fact to all terms in (3.8) 
that are linear in A,. (The terms with j = 0 need a slightly different treatment since 
x o = X - M - '  rj .)  The terms in (3.8) that are quadratic in A, are also O(t -K /2 )  
provided 

sup Iwl"Az(w) < 
W P W  

(3.16) 
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but this is implied by (3.14) since A , ( X )  E L"(R, U). It follows that (3.3) holds, 
provided (3.14) is satisfied for some K > 2 (then it holds for any K ' ,  0 d ~ ' d  K ) .  Then 

and hence 0; exists. The proof for A? goes in the same fashion. 
We note at this point that the proof by Combes and Thomas for exponential decay 

of atomic and ionic eigenfunctions only applies to eigenfunctions with a corresponding 
eigenvalue that does not coincide with a threshold for an excitation or ionisation 
process. If this is the case we have to amend Pa' and Pion so that such eigenfunctions 
are not contained in Pat%''' and PionX'"". In actual experimental situations such states, 
if they exist at all, have never been encountered. 

The existence proof for flyt is more complicated due to the Coulomb interaction 
in the exit channel and the circumstance that two fragments are present in this channel. 
In addition the CM and internal motions are not independent due to the presence of 
the vector potential. Therefore we have to extend slightly Dollard's original proof 
for Coulomb wave operators (Dollard 1964). It is convenient to use as coordinates 
the centre-of-mass coordinates X and the electronic coordinates rj  relative to the 
centre of mass of the ion constituted by the nucleus and electrons 2 to N.  The 
associated canonical momenta are denoted by P and q1 to qN, respectively (see the 
appendix). H""' can be written as (2.20) 

(3.17) H""' = TcM + T' +HI"", 

where TCM is as before, T' =q:/(2ml) and 

(3.18) 

where ml  and Mi are given in the appendix. 
The interaction potential between electron 1 and the ion is given by 

(3.19) 

Now 

is square integrable with respect to r l  and 
1 / 2  

Let 

(3.20) 

(3.21) 

(3.22) 
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so that 

ll[I? -H""'+ m l / ( ~ l r ) ] ~ " " ' ( r ) P " " ' ~ ~ ~  = ll[H'+ W -rT1 + m l / ( ~ l t ) ] ~ " " ' ( t ) P " " ' ~ ~ ~  

s IIHfUo"'(t)Po"'~II + IIW~""'(t)P""'~II+ II[rT1 - m 1 / ( ~ l t ) ] ~ " " ' ( t ~ ~ ~ " ' ~ ~ ~ .  
(3.23) 

$ =g(x, ri)hk(rz,  - , r ~ ) ,  (3.24) 

where hk is an eigenstate of Hion with corresponding eigenvalue &k.  Since A , ( x , ~ )  
depends on bath X 3  and one or more of the rj3's we cannot use a factorised expression 
gl(X)g2(rl) for g(X,  rl) .  Thus we extend Dollard's choice (Dollard 1964) by taking 
for g(X,  rl)  the set of functions with Fourier transforms H(K, k l )  E Y(R6) which vanish 
in a tube around k l  = 0 (i.e. B(K, kl) = 0 ,  lkll < E ) .  It turns out in the sequel that we 
have to punch a few more holes in the carrier of g'. Since can be made to vanish 
on a set of arbitrarily small measure the remaining set of g's is still dense in X. Now, 
following Dollard's method (see also Reed and Simon 1979, p 169), 

We take 

g ( X ,  rl ,  t )  = [exp(-i(TCM+ T1)r)UL ( t ) g ] ( ~ ,  rl)  

= gl(X, r l ,  r )  +g2(X, r1, t ) ,  (3.25) 

(3.26) 
where 

gl(X, r l ,  t )  = (it)-3(Mm1)3'2 exp[is(X, rlr  t)]g'(MX/t, mlr l / t ) ,  

s ( ~ ,  rlr  t )  = ( ~ ~ ~ + m I r : ) / ( 2 t ) + ( m l t / r l )  ln(2mlr:/t) 

with 
(3.27) 

and 

g2(X, r l ,  t )  = ( 2 ~ i t ) - ~ ( ~ m ~ ) ~ ' ~  e x p [ i ( ~ ~ ' + m ~ r : ) / ( 2 t ) ~ ( ~ ,  r l ,  t ) .  

Here R (X,  r l ,  t )  has the property 

I R ( x ,  r l ,  t)l s CSt-'(I + M X 2 / t 2  +mlr:/t2)-"(ln r l W ,  (3.29) 

for any positive integer n and some p = p ( n )  > 0. Our formulae differ from Dollard's 
since we are working in six dimensions instead of three. In (3.23) we require t > e  
instead of Dollard's t > 1. The reason is that different p ' s  can occur depending on t 
being smaller or larger than e, the base of the natural logarithms. 

(3.28) 

t >e,  

We now consider the various terms in (3.23): 

s 1 drl . . . drN W2(rl ,  . . . , r~IIhk(r2, I . . , rN)I2 sup3 1 d X  Ig(x, r l ,  t)i2 
r l c W  

sC.( SUP3 I dx kl(X, rl, f ) I Z +  SUP, I dx IgzW, r1, t)12). (3;30) 
r l e R  r l e R  

Here 

C6 = drl  . . . dr, W21hk 1 2 <  00 (3.31) 

in view of (3.21) and the exponential decay of the ionic eigenfunction hk. 
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so that, taking to = e,  

1 d~ igl(x, rl ,  t ) i2< ~ , t - ~ ,  t >to.  

Furthermore ( n  positive integer) 

I dx Igz(X, l - 1 ,  t)I2 

c (2 . r r t ) -6(~m1)3  dx ~ R ( x ,  r l ,  t i l 2  I 

(3.34) 

c (2 . r r t ) -6 (~m1)3~8( ln  t)2+'t-2 

c ~ , t - ' ( l n  r 1 2 + ,  

d~ (1 +12r tX2/ t2  + mlr : / t2 ) -2"  

(3.35) 

1 1  WU""'(t)P""'lb~~ c Clot - 3 ' z ,  t > to .  (3.36) 

The action of r;' -ml / (q l r )  on gl(t)  leads to a vanishing result, whereas ~ ~ r ~ ' g 2 ( r ) ~ ~  
and ll[ml/(q1f)]g2(t)ll decay as ~ ~ " ( l n  t)" for large t (Dollard 1964, p 734). Thus it 
remains to consider the terms containing the vector potential. We have 

t t ~ f ~ " " ' ( t ) ~ " " ' ~ ~ ~  1 [(le,l/m,)llA~(x,3)p;,g(t)O hkll 

J 
t > to. 

Thus 

2 N  

v = l  , = o  

+ (e:/2m, )IIA;(x,dg 0) 0 hklll. (3.37) 

Expressing XO, . . . , p N  in terms of X ,  r l ,  . , . , rN, P, q l ,  . . . , qN, according to 

(3.39) 
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F o r t > t o ( Y = M X / t , u  = m l r l / t )  

(3.40) 

with E l , K  given by (3.13). Again we assume that (3.14) holds for some K > 2 .  For 
the same reasons as discussed below (3.14) the multiple integral over 1 2  to f N  is finite 
so that (3.40) is finite, provided 

This will be the case if we assume that g'(y, U )  vanishes in a tube around mly3 +Muju3 = 
0, or equivalently around X3 + ~ , r 1 3  = 0. Note that for i = 0, 2, 3,  . . , , N, X3 + aJr13 = 
R3,  the third coordinate of the ionic centre-of-mass, whereas f o r i  = 1, X3 + air3 = ~ 1 3 ,  

the third coordinate of electron 1.  (See the appendix.) 
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where 0 < p < 1. The integrals are finite since the singularity in the integrand for the 
y ,  U integration is integrable for such p.  

In arriving at (3.42) we used the fact that P l g 2 ( t )  obeys a relation of the type 
(3.29). This follows from the fact that Uout(t) commutes with P I  and that Plg  E .Y(R6) 
along with g itself. Combining (3.40) and (3.42) we conclude that 

(3.43) 

for r + CO and for some E > 0 provided (3.14) holds for some K > 2 and g'(y, U )  vanishes 
in a tube around mly3 +Maju3 = 0. Following the same line of reasoning, we find that 
the remaining terms in (3.39) and the terms in (3.37) quadratic in A ,  are also O(f- ' - ' )  
under the same conditions. Thus (3.4) holds for a fundamental set of G's and 
consequently flyt exists. A similar proof can be given for the existence of fl?"'. 

4. Special cases 

In this section we discuss briefly two special cases. The first is that of an infinitely 
heavy nucleus (Born-Oppenheimer approximation) and the second that of a spatially 
homogeneous field (long-wavelength approximation). 

4.1. The Born-Oppenheimer approximation 

Instead of (1.2) the Hamiltonian is now given by 

Now the method of 3: 2 for the existence proof of the time-evolution operator fails, 
since f i ( t )  given by 

Ei( t )  = Y ( r ) H ( t ) Y ( t ) - '  -a- 'p3 
N N 

= 1 t [ p ,  +A(x,,)]'+ 1 Ix , -Xhl - l -N 1 /x, + a - 1 t e 3 1 - ' - a - ' ~ 3  
/ = 1  I s ,  < h s N  ) = I  

(4.2) 
is still time dependent. (Here Y ( t )  = exp(-ia-'P3t), where now P = X E 1  p , . )  

We can, however, apply Kato's results (Kato 1970). In his theorem 4.1 Kat0 gives 
a set of conditions under which f i ( t )  (Kato uses A ( t )  = & ( t ) )  defines a time-evolution 
operator ~ ( t ,  to). Referring to Kato's paper for details we note that, since f i ( t )  is 
self-adjoint with time-independent domain 9 = 9 ( T )  (T  = X E 1  i p ; ) ,  most of these 
conditions are automatically satisfied. For the auxiliary space 9, used by Kato, we 
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can take 9, equipped with the graph norm. Since 9, thus defined, is a Hilbert space 
and hence reflexive and uniformly convex, the results by Kato, obtained in 8 5 of his 
paper, also apply. The only condition that remains to be verified is condition iii of 
Kato's theorem 4.1. In our case this amounts to showing that 

(4.4) 

where ( 1 . 1 1 ,  is the operator norm on a(%',), Z, = L2(R3, dx,). Thus we have to show that 

lim f + r , ,  ~~(lx,  +a-'te3/-'-IxJ +a-ltoe3I-')(1 +T,)-'II,= 0.  (4.5) 

Dropping the index j for brevity we note that for f c L 2 ( R 3 ,  dx) 

g(x) 5 ([I + T l - ' f ) ( ~ )  (4.6) 

is contained in L"(R3, dx) and llgllms Cllfll with C a positive constant (Reed and 
Simon 1975, § IX.7). Thus 

Jl(/x +a-'te3/- '  -1x +a-'toe3l-')[1 + T ] - ' ~ J I s  c J J ~ x  +a-' te3J- ' - (x  +a-'toe31-11JJJfll. 

Now, making a few coordinate changes, we find 

jj~x +a-'te31-' -1x +a-1toe3)-1JJ = / ( t  -to)/aI I) /x +e3/- l  - I x J - ~ I I .  (4.8) 

Since (4.8) tends to zero for t + to it follows that D ( t )  converges towards D(to)  in the 
operator norm topology. Now Kato's results are applicable so that G(t, t o )  and hence 
U(t ,  to)  = Y( t )G( t ,  to)Y(to)-' exists and has the properties mentioned in 0 2. The 
existence of the wave operators 0:" and flPt (with appropriate modifications of U'"(t) 
and U""'(t)) can again be proven by means of Cook's method. In fact things are 
somewhat simpler now since there are no CM variables. It turns out, as before, that 
the wave operators exist, provided (2.35) holds. 

(4.7) 

4.2. Spatially homogeneous fields 

At optical field frequencies the corresponding wavelength is at least two orders of 
magnitude larger than the spatial distances characteristic for the atomic interactions. 
This makes it  plausible to neglect the spatial dependence of A(x, t ) ;  the so-called 



Wave operators for atomic photo-ionisation 1655 

long-wavelength approximation. Now 

(4.9) 

where we write A(t) instead of A(-&lt). In this case we can no longer transform 
the time dependence to the potentials as was done in § 4.1. A direct application of 
Kato's theorems now requires the norm continuity of 

1 {-(ej/mj)A(t) * p i  +[e:/(2mi)]A2(t)}[l + TI-' =H'(t)[l+ TI-'. (4.10) 

This will not be the case for general A,(t)  E L " ( R ,  dt). We have to assume in addition 
that A,(r) is at least piecewise continuous. There is, however, a way out of this 
problem. Let 

N 

j = O  

F ( t )  = ds H f ( s ) .  (4.11) 

F ( t )  is self-adjoint with domain 9 ( F ( t ) )  19. Thus {exp[iF(t)], t E R} is a family of 
unitary operators, which is strongly continuous in t. In addition, for 4 E 9 

(4.12) 

I: 
a, exp[ i~( t ) ]$  = a'([) exp[ i~( t ) ] .  

We consider the equation 

With 

we obtain 

where 

Here 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

f i ( t )  is self-adjoint with domain 9 = 9 ( T )  for each t E R. We can now apply Kato's 
results since we can show that 

(4.18) 

is continuous in t. The proof is similar to that given in 9: 4.1. As a result k(t) generates 
a unitary time-evolution operator C(t, to).  It follows that the formal manipulations 
leading from (4.13) to (4.15) can be given a meaning and that 

(4.19) 

is the time-evolution operator associated with H ( t ) .  The existence of the wave 
operators can now again be proven under condition (2.35).  

u(t, to) = exp[-*(t)lC(t, to) exp[*(to)l 
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5. Discussion 

In the previous sections we discussed the existence of time-evolution and wave 
operators for a model atom in a time-dependent field with fixed propagation direction. 
We used a trick to convert the problem into one with a time-independent Hamiltonian. 
The reason that this was possible is connected with the fact that the potential commutes 
with the total momentum operator. Although we neglected spin effects, it will be 
clear that the addition of spin-spin and spin-orbit interactions to V does not destroy 
this commutation property. Thus, as long as these terms have appropriate relative 
smallness properties with respect to TOI’  (Is is the identity operator in the total 
spin space), the method used here can probably be extended. Note, however, that 
the usual form of the spin-orbit interaction terms (Messiah 1965, p 552, equation 
XIII.95) is too singular to be treated in this way. In a subsequent paper we shall 
discuss the effect of the Pauli principle for the case of spin-independent interactions. 
This is mainly a matter of book-keeping. 

We finally discuss a few matters pertaining to the asymptotic condition on the 
vector potential. In an actual multiphoton ionisation experiment a laser produces a 
pulse of radiation which is focused by means of a lens. In this focus the ionisation 
process takes place. It is often assumed that the field at the time it is centred around 
the focus can be described by a sinusoidal field, damped by a Gaussian. In the Coulomb 
gauge the vector potential and the magnetic component of the electromagnetic field 
are related by 

(5.1) 

This relation holds for B €9 (i.e. B, €9, a = 1, 2, 3) in which case also A €9’. It is 
then easily generalised to more general B fields, using the estimate 

(5.2) 

and the Sobolev inequality. In particular it follows that for square integrable B (as 
is the case for an electromagnetic field with finite energy), A ( x )  E L6(R3, dx). This 
does not necessarily imply that A ( x )  vanishes for large x but if B ( x )  is a smooth 
function obeying 

~ ( x )  < c ( a 2 + r 2 ) - “ ,  c, a 2 > 0 ,  (5.3) 

then it follows from (5.2), by first performing the integration over the angles in x’, that 
-Za+l 1 3 IA(x)I = O(r ), %<CY <i, 

(5.4) 
IA(x)I = O(r-2-c2E),  a 4, F > o .  

(Note that for (Y > a  in (5.3),  B ( x )  is square integrable.) Thus we see that for B ( x )  
decaying sufficiently fast, A ( x )  is also decaying. Equation (5.2) applies to B and A, 
evaluated at some specific time to. This raises the question whether there is decay for 
other times t. This is indeed the case. If B(x ,  t o ) E 9  then also B(x ,  t )  €9, so that 
A(x,  t )  E 9. The situation for B(x,  to)  obeying (5.3) is more complicated, but results 
similar to (5.4) can be obtained. In the model discussed in this paper we therefore 
assumed that A ( u )  = O ( ~ L - ~ - ‘ ) .  At the expense of significant technical complications 
it is possible to relax this condition. This does not seem worthwhile in view of the 
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experimental situation. It is far more realistic to assume that the E and B fields are 
sinusoidal fields, damped by a Gaussian. Thus, in the linearly polarised case, let 
E l ( u )  = c B ~ ( u )  =EO sin(wu) exp(-au2), E 2  = B1 = 0. Then these fields are derivable 
from A ( u )  with A2(u)  = 0 and 

oc: 

Al(u)  = - ( E o / c )  du'sin(wu') e ~ p [ - a ( u ' ) ~ ]  
U 

(5.5) 

which quantity decays as a Gaussian for large IuI. 

transformation. Thus let 
In principle we can spoil the asymptotic behaviour of A ( u )  by making a gauge 

A (x, t )  + A'(x, t )  = A(x, t )  + a,x (x, t ) ,  

O=@(x, t )+@'(xot )=-a,x(x ,  t ) .  
(5.6) 

Now H ( t )  = H ( A ( t ) )  (equation (1.2)) with A ( t )  in the Coulomb gauge changes into 

N 
H ' ( t )  = H ( A ' ( t ) ) -  eJ@'(xJ,  t ) ,  

I - 0  

with the corresponding time-evolution operator U(t ,  to)'.  With 

G(t)  = G(xo,. . . , xN, t )  = exp 
j = O  

we find for sufficiently smooth x(x, t )  that 

U(t ,  t o ) ' =  G(t)U(t, to)G-'(tO). 

Defining the new channel wave-operators in the same way, i.e. 

U"(t,  t o ) ' =  G(t)U"(t, to)G-'(to), a E {in, out}, 

we obtain 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

so that the gauge-transformed scattering operator is 

S'(to) = (OY(to)')*R!!'(to)' = G(to)O","(to)O~(to)G-'(to) 

= G(to)SG-'(to). (5.12) 

Here we have to keep in mind that, although G(t)  is a unitary operator for x(x, t ) E  
L " ( R 3 ,  dr), Vt E R, derivatives of x occurring in A'  and @' may lead to self-adjointness 
problems for the Hamiltonians. In making a gauge transformation we should also 
change the states ( f +  G(to)f) so that S-matrix elements (Sf ,  g)  are invariant. This is 
understandable from the fact that (5.9) defines a unitary transformation of the 
operators, resulting in (5.12), even in the absence of any field. The situation in the 
classical case is similar; the equations of motion for x ( t )  and u ( t )  are not affected by 
gauge transformation, since they contain B and E, rather than A. In the Hamiltonian 
formalism the time development of the system is fixed, once the initial coordinates 
x ( t o )  and momentap(to) and the Hamiltonian are given. Under a gauge transformation 
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both the Hamiltonian and the initial momentum (P(to)+p'(to) =p( to )  -ca&(to) )  are 
transformed. If we do not transform p ( t o )  wrong results for x(t) and o ( t )  can occur. 

In the light of this it is somewhat surprising that there exists a subclass of gauge 
functions x(x, t )  such that measurable quantities are not affected by the corresponding 
gauge-transformations, even if the states are not transformed (Aharonov and Au 
1979, Haller and Sohn 1979). These gauge functions have the property that x(x, to )  
vanishes for large 1x1 ( to  is fixed). That this can happen in scattering processes is 
understandable from the classical case, discussed above. In a scattering process the 
particle is initially far away from the scattering centre. But for large x the gauge 
function vanishes so that the gauge-transformed initial momentum coincides with the 
original one. 

In a sequel to the present work, where we are going to relate the wave operators, 
discussed here, to measurable quantities, we intend to give a new proof of this gauge 
invariance, starting from the transformations (5.12). There we shall also show that 
observable quantities do not depend on the parameter to. 
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Appendix 

In this appendix we give the relation between the coordinates xo, . . . , x N  and associated 
momenta po, . . . , p N  and the coordinates X ,  r l ,  . . . , rN and associated momenta P, 
q l ,  . . . , q N .  The nucleus has mass M, the electrons mass m ( m  = 1 in atomic units). 
The mass of the ion consisting of the electrons 2 , .  . . , N and the nucleus is Mi = 
M + ( N  - 1)m. We denote the coordinate vector of the ionic centre of mass by R, see 
also figure 1. We have 

N N 

j = 1  j = 2  
M = m , , . r o + m  1 xi, MiR=m,,.ro+m xi, 

and rj is defined by 

rj = x, - R, j = O , .  . . , N.  

Then 
N 

; = 2  
xo = X  - (m/M)rl-  im/mo) C rj, 

x1 = X + [ l  - ( m / M ) ] r l  = X + ( M i / M ) r l ,  

xi = X + r; - ( m / M ) r l ,  j = 2 , .  . . , N .  
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Figure 1. Picture of the various coordinates employed in the existence proof for the 
outgoing wave-operator in 5 3. 

where ml = mMi/M. 
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